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Abstract 

Cleansing data from impurities is an integral part of data processing and mainte-
nance. This has lead to the development of a broad range of methods intending to 
enhance the accuracy and thereby the usability of existing data. This paper pre-
sents a survey of data cleansing problems, approaches, and methods. We classify 
the various types of anomalies occurring in data that have to be eliminated, and 
we define a set of quality criteria that comprehensively cleansed data has to ac-
complish. Based on this classification we evaluate and compare existing ap-
proaches for data cleansing with respect to the types of anomalies handled and 
eliminated by them. We also describe in general the different steps in data clean-
sing and specify the methods used within the cleansing process and give an out-
look to research directions that complement the existing systems. 
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1 Introduction 

The application and exploitation of huge amounts of data takes an ever increasing role in 
modern economy, government, and research. Anomalies and impurities in data cause irrita-
tions and avert its effective utilization, disabling high performance processing and confirma-
tion of the results and conclusions gained by data interpretation and analysis. This leads to 
higher cost and less benefit for data processing, possibly making its application worthless for 
the consumer. In [Eng00] several problems caused by data anomalies are listed, among others, 
that incorrect price data in retail databases costs American consumers $2.5 billion in annual 
overcharges. In this context, data cleansing has received a strong and growing interest over 
the years. We rely on error-free data and the ability to deploy it to our needs. This deployment 
includes the efficient integration, application, interpretation, and analysis of data to support 
business processes, administrative tasks, decision making, and scientific reasoning. 

The existence of anomalies and impurities in real-world data is well known. In [Orr98, 
Red98] their typical rates are estimated to be at 5%. This has lead to the development of a 
broad range of methods intending to identify and eliminate them in existing data. We subsume 
all these under the term data cleansing; other names are data cleaning, scrubbing, or recon-
ciliation. There is no common description about the objectives and extend of comprehensive 
data cleansing. Data cleansing is applied with varying comprehension and demands in the 
different areas of data processing and maintenance. The original aim of data cleansing was to 
eliminate duplicates in a data collection, a problem occurring already in single database appli-
cations and gets worse when integrating data from different sources. Data cleansing is there-
fore often regarded as integral part of the data integration process. Besides elimination of du-
plicates, the integration process contains the transformation of data into a form desired by the 
intended application and the enforcement of domain dependent constraints on the data. 

Usually the process of data cleansing cannot be performed without the involvement of a do-
main expert, because the detection and correction of anomalies requires detailed domain 
knowledge. Data cleansing is therefore described as semi-automatic but it should be as auto-
matic as possible because of the large amount of data that usually is be processed and because 
of the time required for an expert to cleanse it manually. The ability for comprehensive and 
successful data cleansing is limited by the available knowledge and information necessary to 
detect and correct anomalies in data. 

Data cleansing is a term without a clear or settled definition. The reason is that data cleansing 
targets errors in data, where the definition of what is an error and what not is highly applica-
tion specific. Consequently, many methods concern only a small part of a comprehensive data 
cleansing process using highly domain specific heuristics and algorithms. This hinders trans-
fer and reuse of the findings for other sources and domains, and considerably complicates 
their comparison 

This paper presents a survey of data cleansing approaches and methods. Starting from a moti-
vation of data cleansing, existing errors in data are classified and a set of criteria is defined 
that comprehensive data cleansing has to address. This enables the evaluation and comparison 
of existing approaches for data cleansing regarding the types of errors handled and eliminated 
by them. Comparability is achieved by the classification of errors in data. Existing approaches 
can now be evaluated regarding the classes of errors handled by them. We also describe in 
general the different steps in data cleansing, specify the methods used within the cleansing 
process, and outline remaining problems and challenges for data cleansing research. 
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The structure of the paper is as follows. In the next section we motivate the need to cleanse 
data by describing the various intensions for data management, the occurring problems, and 
resulting consequences from anomalies in the data. In Section 3 we classify the anomalies in 
data in more detail. In Section 4 our perception of data cleansing is defined and a set of qual-
ity criteria is specified that represent measures for the status of data – before and after execut-
ing a cleansing process. Hence, these criteria can be used to measure the necessity and success 
of data cleansing applications. In Section 5 we outline the different steps in data cleansing. In 
Section 6 the methods used in data cleansing are listed and described in short. Section 7 gives 
an overview and comparison of existing projects for data cleansing according to our specifica-
tion of comprehensive data cleansing. Section 8 outlines existing challenges and open prob-
lems within the research field of data cleansing. We conclude in Section 9. 

2 Motivation 

The processing and analysis of data is motivated by different objectives. Data are symbolic 
representations of information, i.e., facts or entities from the world, depicted by symbolic val-
ues. Data is collected to form a representation of a certain part of the world, called the mini-
world (M) or Universe of Discourse (UoD) [EN00]. For the rest of this paper we consider data 
items to be tuples, i.e., sets of related discrete values from a finite set of domains. Each tuple 
represents an entity from the mini-world with each of its values in turn representing one of the 
entity’s properties, e.g., persons with their properties name, date of birth, height, and weight. 

The main objective for collecting and processing data is to fulfil different tasks in (i) admini-
stration, e.g., to keep track of the employees in a company, the customers of our company, or 
the sales volume of our companies branches, (ii) supporting business process, e.g., using the 
customers address list for direct mailing to advertise new products, and (iii) analysis and in-
terpretation to support decision making and to generate new information and knowledge. De-
cision making in business and government is based on analysis of data to discover trends and 
keep tab on developments and investments. Scientists analyse data to gain new information 
and knowledge about the partition of the world they are investigating. 

Anomaly is a property of data values that renders them a wrong representation of the mini-
world. They may result from erroneous measurements, lazy input habits, omissions occurring 
while collecting and maintaining data, etc. They might also stem from misinterpretations in 
data analysis or due to changes in the mini-world that are unnoticed or not reflected by 
changes to the representing data. A special type of anomaly is redundancy, i.e., multiple tu-
ples representing the same fact or overlapping parts of it. Throughout the reminder of this 
paper we will use the term anomaly and error synonymously. 

The efficient and effective use of data is hampered by data anomalies. By efficient we mean 
the predominantly automatic, high performance processing and by effective the attainment 
reliable and profitable outcomes. We call data containing anomalies erroneous or dirty. There 
are various examples and scenarios illustrating the problems caused by erroneous data. Here 
we give a short example for each of the objectives mentioned above. 

Administration: The government analyses data gained by population census to decide, which 
regions of the country require further investments in the infrastructure, like schools and other 
educational facilities, because of expected future trends. If the rate of birth in one region has 
increased over the last couple of years the existing schools and teachers employed might not 
be sufficient the handle the amount of students expected. Thus, additional schools or em-
ployment of teachers will be needed. Inaccuracies in analysed data can lead to false conclu-
sions and misdirected investments. In this example, erroneous data could result in an over- or 
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undersupply of educational facilities if the information about the birth rate was inaccurate, or 
if many people have moved to other regions. 
Supporting business processes: Erroneous data leads to unnecessary costs and probably loss 
of reputation when used to support business processes. Consider a company using a list of 
consumers with their addresses and buying habits and preferences to advertise a new product 
by direct mailing. Invalid addresses cause the letters to be returned as undeliverable. People 
duplicated in the mailing list account for multiple letters being send to the same person, lead-
ing to unnecessary expenses and frustration. Inaccurate information about consumer buying 
habits and preferences contaminate and falsify the target group, resulting in advertisement of 
products that do not correspond to consumers needs. Companies trading such data face the 
possibility of an additional loss of reputation in case of erroneous data. 
Analysis: In genome research, functional annotation of proteins is used to estimate the func-
tion of uncharacterised proteins by comparing their amino acid sequences and transferring 
functional annotation in case of high sequence similarity. Existing errors within annotations 
are therefore propagated to the newly discovered protein. In [Bre99] the error rate for func-
tional annotation of proteins is estimated to be over 8% by comparing analysis results of three 
independent research groups annotating the proteome of Mycoplasma genitalium. With the 
increased dependency on automatic annotation methods because of the high data volume this 
rate of errors can only be expected to rise. 

3 Data Anomalies 

Before describing and classifying data anomalies we define terms and concepts regarding the 
schema and instances of a data collection. Here, we closely follow the definitions in [EN00] 
and extend them to our needs. 

3.1 Data Model 
We assume the existence of a non-empty set D = {D1, …, Dm} of domains whose values are 
sequences of symbols from an finite, non-empty alphabet ∑D. For each domain Di, 1 ≤ i ≤ m, 
there exists an arbitrary grammar describing the syntax of the domain values. Domains there-
fore represent regular languages, i.e., words from ∑D

* generated by a grammar G(Di), called 
the domain format. 

A relation schema R is a name and a list of attributes, A1, …, An, denoted by R(A1, …, An). 
The degree #R of a relation schema R is the number of attributes n. Each attribute A is the 
name of a role played by some domain from D, denoted by dom(A), in the relation schema. A 
relation (or relation instance) r of the relation schema R is a set of n-tuples r = {t1, …, tn}. 
Each ti is a list of n values ti = <vi1, …, vin>, where each value vij, 1 ≤ j ≤ n, is an element of 
dom(Aj). The degree #t of a tuple is the number of values n. The set of values for attribute Aj, 
in instance r of R(A1, …, An) is denoted by val(r, Aj). 

A database schema S contains a set of relational schemas {R1, …, Rk} and a set of integrity 
constraints Γ that must hold for each instance of S = ({R1, …, Rk}, Γ). The instance s of a 
database schema is a list of relation instances, denoted by s = <r1, …, rk>, where each instance 
ri, 1 ≤ i ≤ k, is an instance of relational schema Ri, satisfying the constraints in Γ. Each integ-
rity constraint γ ∈ Γ is a function that associates a Boolean value with an instance s. A data-
base instance s satisfies γ if γ(s) = true. We call a database instance a data collection if the 
schema and the integrity constraints are not fully enforced by software components, called the 
database management system. 
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3.2 Classification of Data Anomalies 
We roughly classify data anomalies into syntactical, semantic, and coverage anomalies. Syn-
tactical anomalies describe characteristics concerning the format and values used for represen-
tation of the entities. Semantic anomalies hinder the data collection from being a comprehen-
sive and non-redundant representation the mini-world. Coverage anomalies decrease the 
amount of entities and entity properties from the mini-world that are represented in the data 
collection.  

3.2.1 Syntactical Anomalies 
Lexical errors name discrepancies between the structure of the data items and the specified 
format. This is the case if the number of values are unexpected low/high for a tuple t, i.e., the 
degree of the tuple #t is different from #R, the degree of the anticipated relation schema for 
the tuple. For example, assume the data to be stored in table form with each row representing 
an tuple and each column an attribute (Figure 1). If we expect the table to have five columns 
because each tuple has five attributes but some or all of the rows contain only four columns 
then the actual structure of the data does not conform to the specified format. Data which is 
lexically correct can be parsed into a specified token structure deducible from the relational 
schema. 

Name Age Gender Size 
Peter 23 M 7’1 
Tom 34 M  
Sue 21 5’8  

Figure 1: Data table with lexical errors 

Domain format errors specify errors where the given value for an attribute A does not con-
form with the anticipated domain format G(dom(A)). For example, an attribute NAME may 
have a domain specified to be ∑D

*, ∑D
*. Given a concrete value ‘John Smith’ while this is a 

possibly correct name it does not satisfy the defined format of the domain values because of 
the missing comma between the words. 

The anomaly classes lexical errors and domain format errors often are subsumed by the term 
syntactical error because they represent violations of the overall format. 

Irregularities are concerned with the non-uniform use of values, units and abbreviations. 
This can happen for example if one use different currencies to specify an employees salary. 
This is especially profound if the currency is not explicitly listed with each value, and is as-
sumed to be uniform. This results in values being correct representations of facts if we have 
the necessary knowledge about their representation needed to interpret them. Another exam-
ple is the use or the different use of abbreviations. Inconsistent use of values harden the com-
parability of tuples which is influencing clustering for duplicate elimination or other analysis 
tasks. 

3.2.2 Semantic Anomalies 

Integrity constraint violations describe tuples (or sets of tuples) that do not satisfy one or 
more of the integrity constraints in Γ. Integrity constraints are used to describe our under-
standing of the mini-world by restricting the set of valid instances. Each constraint is a rule 
representing knowledge about the domain and the values allowed for representing certain 
facts, e.g., AGE ≥ 0. 
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Contradictions are values within one tuple or between tuples that violate some kind of de-
pendency between the values. An example for the first case could be a contradiction between 
the attribute AGE and DATE_OF_BIRTH for a tuple representing persons. Contradictions are 
either violations of functional dependencies that can be represented as integrity constraints or 
duplicates with inexact values. They are therefore not regarded as separate data anomaly 
throughout the reminder of this paper. 

Duplicates are two or more tuples representing the same entity from the mini-world. The val-
ues of these tuples do not need to be complete identical. Inexact duplicates are specific cases 
of contradiction between two or more tuples. They represent the same entity but with different 
values for all or some of its properties. This hardens the detection of duplicates and there mer-
gence. 

Invalid tuples represent by far the most complicated class of anomaly found in data collec-
tions. By invalid we mean tuples that do not display anomalies of the classes defined above 
but still do not represent valid entities from the mini-world. They result from our inability to 
describe reality within a formal model by integrity constraints. They are extremely hard to 
find and even more complicated to correct because there are no rules (or constraints) which 
are violated by these tuples and on the other hand we only have incomplete knowledge about 
every entity in the mini-world. 

3.2.3 Coverage Anomalies 
Missing values are the result of omissions while collecting the data. This is to some degree a 
constraint violation if we have null values for attributes where there exists a NOT NULL con-
straint for them. In other cases we might not have such a constraint thus allowing null values 
for an attribute. In these cases we have to decide whether the value exists in the mini-world 
and has to be deduced here or not. Only those missing values that should exist in our data col-
lection, because the entity has an according property with a measurable value, but are not con-
tained, are regarded as anomalies. 

Missing tuples result from omissions of complete entities existent in the mini-world that are 
not represented by tuples in the data collection. 

Anomalies could further be classified according to the amount of data accounting for the con-
straint violation. This can be single values, values within a tuple, values within one or more 
columns of the data collection or tuples and sets of tuples from different relations. This is in 
close relation to the classification of data cleansing problems in [RD00]. There, the authors 
also distinguish schema-related and instance-related problems. Schema-level problems can be 
addressed at the schema level by schema evolution, schema translation, and schema integra-
tion. Examples for schema-level problems are missing integrity constraints or domain format 
errors. The schema-level problems are always reflected by anomalies within the instances. In 
our definition the cleansing of data is performed on the relation instances and does not have to 
be reflected by changes within the schema. We therefore do not distinguish between schema 
and instance related problems. 

4 Data Cleansing and Data Quality 

The existence of anomalies in real-world data motivates the development and application of 
data cleansing methods. With the above definitions we are now able to define data cleansing 
and specify how to measure the success of cleansing erroneous data. 
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4.1 Data Quality 
To be processable and interpretable in a effective and efficient manner, data has to satisfy a 
set of quality criteria. Data satisfying those quality criteria is said to be of high quality. In gen-
eral, data quality1 is defined as an aggregated value over a set of quality criteria [Nau02]. 
Starting with the quality criteria defined in [Nau02, Ton00] we describe the set of criteria that 
are affected by comprehensive data cleansing and define how to assess scores for each one of 
them for an existing data collection. 

To measure the quality of a data collection, scores have to be assessed for each of the quality 
criteria. The assessment of scores for quality criteria can be used to quantify the necessity of 
data cleansing for a data collection as well as the success of a performed data cleansing proc-
ess on a data collection. Quality criteria can also be used within optimization of data cleansing 
by specifying priorities for each of the criteria which in turn influences the execution of data 
cleansing methods affecting the specific criteria. 

 
Figure 2: Hierarchy of data quality criteria 

4.2 Quality Criteria 
The quality criteria defined for comprehensive data cleansing form a hierarchy. This hierarchy 
results from quality criteria being sub-divided into finer grained quality criteria, i.e., criteria 
being used as short-cut for a set of quality criteria. Figure 2 shows the resulting hierarchy of 
the criteria defined below. For each of the criteria we describe how to assess the quality score 
for a given data collection. Here we assume each collection consisting of only one relational 
instance, i.e. S = ({R}, Γ) and therefore s ≡ r. We do not assume the enforcement of integrity 
constraints on r, i.e., not every constraint γ ∈ Γ is true for all tuples in r. The set of entities in 
the mini-world is denoted by M. The score for each of the quality criteria is influenced by one 
or more of the anomalies defined in section 3.2. In table 1 we show the quality criteria and the 
anomalies affecting them. 

Accuracy in [Nau02] is defined as the quotient of the number of correct values in the data 
collection and the overall number of values. Here we use the term accuracy in a different way. 
                                                 
1 We will use the term data quality instead of information quality because we disregard criteria that are con-
cerned with the information consumer and the subjective usefulness of the presented information. 
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Accuracy is describe as an aggregated value over the quality criteria Integrity, Consistency, 
and Density. Intuitively this describes an exact, uniform and complete representation of the 
mini-world, i.e., a data collection not containing any of the defined anomalies except for Du-
plicates. We define the quality criteria Integrity, Consistency, and Density in the following. 

Integrity is used as defined in [Mot89]. It is further divided into the criteria Completeness 
and Validity and therefore again an aggregated value over quality criteria. Intuitively, an inte-
gral data collection contains representations of all the entities in the mini-world and only of 
those, i.e., there are no invalid tuples or integrity constraint violations as well as no missing 
tuples. 

Completeness is defined as the quotient of entities from M being represented by a tuple in r 
and the overall number of entities in M. Achieving this form of completeness is not a primary 
data cleansing concern but more of a data integration problem. We achieve completeness 
within data cleansing by correcting tuples containing anomalies and by not just deleting these 
tuples if they are representations of entities from M. Within integrity constraint enforcement 
(see section 6.3) it is also possible that additional tuples are generated, representing obviously 
existing entities from M that are currently unrepresented in r. 

Validity is the quotient of entities from M being represented by tuples in r and the total 
amount of tuples in r, i.e., the percentage of tuples in r representing (valid) entities from M. 
As mentioned in section 3.2.2 the identification of invalid tuples is complicated and some-
times impossible because of the inability or high cost for repeating measurements to verify the 
correctness of a measured value. Validity can be approximated using the integrity constraints 
specified in Γ. Integrity constraints represent our understanding of the regularities in the mini-
world. Tuples violating integrity constraints are therefore regarded as invalid tuples. Con-
straint violations arise within systems that do not enforce integrity constraints completely. 
This might be because of system limitations or on demand of the user, probably because of 
performance issues. We approximate validity as the quotient of tuples satisfying all integrity 
constraints in Γ and the overall number of tuples in r. 

Consistency concerns the syntactical anomalies as well as contradictions. It is further divided 
into Schema conformance and Uniformity forming another aggregated value over quality cri-
teria. Intuitively a consistent data collection is syntactically uniform and free of contradic-
tions. 

Schema conformance is the quotient of tuples in r conform to the syntactical structure de-
fined by schema R and the overall number of tuples in r. This includes the domain formats 
G(dom(Ai)) of the attributes A1, … An in R. Some systems do not enforce the complete syn-
tactical structure thus allowing for tuples within the collection that are not absolutely format 
conform. This is especially true for the relational database systems where the adherence of 
domain formats is incumbent to the user. 

Uniformity is directly related to irregularities, i.e., the proper use of values within each at-
tribute. The semantic and usage of a values should be uniform within val(r, Ai) for each Ai in 
R. Uniformity is the quotient of attributes not containing irregularities in their values and n, 
the total number of attributes in r. 

Density is quotient of missing values in the tuples of r and the number of total values that 
ought be known because they exist for a represented entity. There still can be values or prop-
erties non-existent that have to be represented by null values having the exact meaning of not 
being known. These are no downgrades of data quality. It would be a downgrade if we try to 
estimate a value for them. 

Uniqueness is the quotient of tuples representing the same entity in the mini-world and the 
total number of tuples in r. A collection that is unique does not contain duplicates. Recalling 
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the definition of accuracy as a collection not containing any anomalies except duplicates, a 
data collection being accurate and unique does not contain any of the anomalies defined in 
section 3. This describes a data collection not being in need for data cleansing. 

Table 1 lists the defined quality criteria and anomalies affecting them. Included are only those 
criteria that are not further divided into sub-criteria. Each • indicates direct downgrading of 
the quality criteria while – indicates that the occurrence of this anomaly hampers the detection 
of other anomalies downgrading the quality criteria.  

 Completeness Validity Schema 
conform. Uniformity Density Uniqueness

Lexical 
error  - • - - - 

Domain 
format error  - • -  - 

Irregularities  -  •  - 
Constraint 
Violation  •     

Missing 
Value     • - 

Missing 
Tuple •      

Duplicates      • 

Invalid 
Tuple  •     

Table 1 : Data anomalies affecting data quality criteria 

Each • indicates direct downgrading of the quality criteria while – indicates that the occur-
rence of this anomaly hampers the detection of other anomalies downgrading the quality crite-
ria.  

5 A Process Perspective on Data Cleansing  

Comprehensive data cleansing is defined as the entirety of operations performed on existing 
data to remove anomalies and receive a data collection being an accurate and unique represen-
tation of the mini-world. It is a (semi-)automatic process of operations performed on data that 
perform, preferable in this order, (i) format adaptation for tuples and values, (ii) integrity con-
straint enforcement, (iii) derivation of missing values from existing ones, (iv) removing con-
tradictions within or between tuples, (v) merging and eliminating duplicates, and (vi) detec-
tion of outliers, i.e., tuples and values having a high potential of being invalid. Data cleansing 
may include structural transformation, i.e. transforming the data into a format that is better 
manageable or better fitting the mini-world. The quality of schema though is not a direct con-
cern of data cleansing and therefore not listed with the quality criteria defined above. We will 
list the methods for data cleansing in more detail in section 6. 

According to [MM00, RH01], the process of data cleansing comprises the three major steps 
(i) auditing data to identify the types of anomalies reducing the data quality, (ii) choosing ap-
propriate methods to automatically detect and remove them, and (iii) applying the methods to 
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the tuples in the data collection. Steps (ii) and (iii) can be seen as specification and execution 
of a data cleansing workflow. We add another task (iv), the post-processing or control step 
where we exam the results and perform exception handling for the tuples not corrected within 
the actual processing. Figure 3 shows the steps within the data cleansing process. The specifi-
cation of the data cleansing process and the control of its execution is done by one or more 
domain experts, i.e., experts with knowledge about the mini-world and its regularities and 
peculiarities. 

The process of data cleansing normally never finishes, because anomalies like invalid tuples 
are very hard to find and eliminate. Depending on the intended application of the data it has to 
be decided how much effort is required to spend for data cleansing.  

 
Figure 3: Data cleansing process 

5.1 Data Auditing 
The first step in data cleansing is auditing the data to find the types of anomalies contained 
within it. The data is audited using statistical methods and parsing the data to detect syntacti-
cal anomalies. The instance analysis of individual attributes (data profiling) and the whole 
data collection (data mining) derives information such as minimal and maximal length, value 
range, frequency of values, variance, uniqueness, occurrence of null values, typical string pat-
terns as well as patterns specific in the complete data collection (functional dependencies and 
association rules) [RD00].  

The results of auditing the data support the specification of integrity constraints and domain 
formats. Integrity constraints are depending on the application domain and are specified by 
domain expert. Each constraint is checked to identify possible violating tuples. For one-time 
data cleansing only those constraints that are violated within the given data collection have to 
be further regarded within the cleansing process. Auditing data also includes the search for 
characteristics in data that can later be used for the correction of anomalies. 

As a result of the first step in the data cleansing process there should be an indication for each 
of the possible anomalies to whether it occurs within the data collection and with which kind 
of characteristics. For each of these occurrences a function, called tuple partitioner, for detect-
ing all of its instances in the collection should be available or directly inferable. 
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5.2 Workflow Specification 
Detection and elimination of anomalies is performed by a sequence of operations on the data. 
This is called the data cleansing workflow. It is specified after auditing the data to gain infor-
mation about the existing anomalies in the data collection at hand. One of the main challenges 
in data cleansing insists in the specification of an cleansing workflow that is to be applied to 
the dirty data automatically eliminating all anomalies in the data. 

For the specification of the operations intending to modify erroneous data the cause of anoma-
lies have to be known and closely considered. The causes for anomalies are manifold. Typical 
causes for anomalies are impreciseness in measurement or systematic errors in experimental 
setup, false statements or lazy input habits, inconsistent use of abbreviations, misuse or misin-
terpretation of data input fields incorrect or careless interpretation of the analysis results, or 
even be a consequence of anomalies in the data analysed, leading to invalid tuples results and 
to a propagation of errors. For the specification of correcting methods the cause of error has to 
be considered. If for example we assume an anomaly to result from typing errors at data input 
the layout of the keyboard can help in specifying and assessing the generation of possible so-
lutions. The knowledge about the experiments performed also helps identify and correct sys-
tematic errors. 

Syntax errors are normally handled first because the data has to be automatically process to 
detect and remove the other types of anomalies which is additionally hindered by syntax er-
rors. Otherwise there is not specific order in eliminating anomalies by the data cleansing 
workflow. 

In [RD00] another step is defined after specifying the cleansing workflow and before its exe-
cution, the verification. Here, the correctness and effectiveness of the workflow is tested and 
evaluated. We assume this verification step to be an integral part of the workflow specifica-
tion. 

5.3 Workflow Execution 
The data cleansing workflow is executed after specification and verification of its correctness. 
The implementation should enable an efficient performance even on large sets of data. This is 
often a trade-off because the execution of a data cleansing operation can be quite computing 
intensive, especially if a comprehensive and 100% complete elimination of anomalies is de-
sired. So we need a heuristics to can achieve the best accuracy while still having an acceptable 
execution speed [GFSSS01b]. 

There is a great demand for interaction with domain experts during the execution of the data 
cleansing workflow. In difficult cases the expert has to decide whether a tuple is erroneous or 
not and specify or select the correct modification for erroneous tuples from a set of solutions. 
The interaction with the expert is expensive and time consuming. Tuples that cannot not be 
corrected immediately are often logged for manual inspection after executing the cleansing 
workflow. 

5.4 Post-Processing and Controlling 
After executing the cleansing workflow, the results are inspected to again verify the correct-
ness of the specified operations. Within the controlling step the tuples that could not be cor-
rected initially are inspected intending to correct them manually. This results in a new cycle in 
the data cleansing process, starting by auditing the data and searching for characteristics in 
exceptional data that allow us to specify an additional workflow to cleanse the data further by 
automatic processing. This might be supported by learning sequences of cleansing operations 
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for certain anomalies by example, i.e., the expert cleanses one tuple by example and the sys-
tem learns from this to perform the cleansing of other occurrences of the anomaly automati-
cally. 

6 Methods used for Data Cleansing 

There exists a multitude of different methods used within the data cleansing process. In this 
section we intend to give a short overview for the most popular of them.  

6.1 Parsing 
Parsing in data cleansing is performed for the detection of syntax errors. A parser for a gram-
mar G is a program that decides for a given string whether it is an element of the language 
defined by the grammar G. In the context of compilers for programming languages the strings 
represent computer programs [AU79]. In data cleansing the strings are either complete tuples 
of a relational instance or attribute values from as domain. Those strings that represent syntax 
errors have to be corrected. This can be done for example using edit distance functions choos-
ing the possible correction with the minimal edit distance. 

The existence and amount of syntax errors in a data collection depends on the extend of 
schema enforcement in the environment where the data is kept. If the data is contained in flat 
files there exists the possibility of lexical errors and domain errors. In this case, a grammar 
derived from the file structure is used and the stings represent complete tuples. Data being 
managed by database management systems is not expected to contain lexical or domain er-
rors. Still, domain format errors can exists for each of the attributes. The grammar used for 
parsing is the domain format G(A). The specification of domain formats can be supported by 
pattern learning techniques like they are described in [RH01]. They use a sample set of values 
to deduce the format of the domain. They also generate a discrepancy detector which is used 
for anomaly detection. 

6.2 Data Transformation 
Data transformation intends to map the data from their given format into the format expected 
by the application [ACMM+99]. The transformations affect the schema of the tuples as well 
as the domains of their values. Schema transformation is often performed in close conjunction 
with data cleansing. The data from various sources is mapped into a common schema better 
fitting the needs of the intended application. The correction of values have to be performed 
only in cases where the input data does not conform to its schema leading to failures in the 
transformation process. This makes data cleansing and schema transformation supplemental 
tasks. 

Standardization and normalization are transformations on the instance level used with the 
intension of removing irregularities in data. This includes simple value conversion or translat-
ing functions as well as normalizing numeric values to lie in a fixed interval given by the 
minimum and maximum values [SS01]. 

6.3 Integrity Constraint Enforcement 
The elimination of integrity constraints violations is closely related to techniques from integ-
rity constraint enforcement. In general, integrity constraint enforcement ensures the satisfac-
tion of integrity constraints after transactions modifying a data collection by inserting, delet-
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ing, or updating tuples [MT99] have been performed. The two different approaches are integ-
rity constraint checking and integrity constraint maintenance. Integrity constraint checking 
rejects transactions that, if applied, would violate some integrity constraint. Integrity con-
straint maintenance is concerned with identifying additional updates (i.e. repair) to be added 
to the original transaction to guarantee that the resulting data collection does not violate any 
integrity constraint. 

In [EBRS+01] it is shown that integrity constraint enforcement is applicable to some degree 
in data cleansing but it also has some limitations. The basic idea is to automatically identify 
from the set of integrity constraints a series of modifications and apply them on the data col-
lection so that afterwards the collection does not contain any further integrity constraint viola-
tions. The authors outline some limitations of the application of these techniques for data 
cleansing (or data reconciliation as they call it). The main limitation is based on the fact that 
integrity enforcement techniques operate on valid database states and single transactions vio-
lating some of the constraints. When cleansing data, we have a large amount of data and con-
straint violations and therefore a large search space resp. an even larger amount of repairs 
(because we could first repair tuple 1 and then based upon this tuple 2 or the other way around 
leading to different results). In addition, the generated repairs primarily focus on the insertion 
or deletion of tuples rather than the correction of single values to eliminate constraint viola-
tions. Another problem is based upon the fact that existing approaches use strategies to limit 
the set of possible repairs. These strategies are shown to remove important repairs from their 
applications domain point of view. 

The application of integrity enforcement as seen by the authors is limited to a supportive 
rather than a dominant role. Control of the process must remain with the user all the time. The 
tool presents possible repairs to the user, makes the state of repairs resistant and supports safe 
experimentation. 

6.4 Duplicate elimination 
There are several approaches for duplicate elimination or record linkage which is a part of 
data cleansing. Every duplicate detection method proposed requires an algorithm for deter-
mine whether two or more tuples are duplicate representations of the same entity. For efficient 
duplicate detection every tuple has to be compared to every other tuple using this duplicate 
detection method. In [HS95] a fast method (sorted neighbourhood method) is developed to 
reduce the number of required comparisons. The tuples are sorted by a key, possibly con-
structed from the attributes of the relation, that hopefully brings duplicate tuples close to an-
other. Then only the tuples within a small window (floating over the relation) are compared 
with each other to find duplicates. The identification whether two tuples are duplicates is done 
using rules based on domain specific knowledge. In order to improve accuracy, the results of 
several passes of duplicate detection can be combined by explicitly computing transitive clo-
sure of all discovered pairwise duplicate tuples. Not much is said about how the duplicates are 
merged. In [LLLK99] this approach is further extended on tuples with syntactically structured 
attributes, i.e., not conform with the domain format. Because of format errors, tuples that are 
duplicates might not be close together after sorting. Therefore, the attribute values are token-
ized into lexical units and the tokens are then sorted within each attribute before the whole 
relation is sorted. The pairwise tuple matching algorithms used in most previous work have 
been application-specific. In [ME97] a domain independent matching-algorithm is used in 
that it can be used without any modification in different applications. Therefore an edit-
distance algorithm based on the Smith-Waterman algorithm is used [SM81]. In [ACG02] the 
authors propose an approach that avoids the problems of the sorting methods. They rely on 
the dimensional hierarchies typically associated with dimensional tables in a data warehouse 
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[ACG02]. Those are hierarchies of tables typically in 1:n-relationships expressed by key-
foreign key relationships. Each tuple in the 1-relation is associated with a set of tuples in the 
n-relation. The degree of overlap between sets associated with two tuples from the 1-relation 
is a measure of co-occurrence between them, and can be used to detect duplicates. 

6.5 Statistical Methods 
In [MM00] the application of statistical methods in data cleansing is described. These meth-
ods can be used for the auditing of data as well as the correction of anomalies. Detection and 
elimination of complex errors representing invalid tuples go beyond the checking and en-
forcement of integrity constraints. They often involve relationships between two or more at-
tributes that are very difficult to uncover and describe by integrity constraints. This can be 
viewed as a problem in outlier detection, i.e., minorities of tuples and values that do not con-
form to the general characteristics of a given data collection. 

By analysing the data using the values of mean, standard deviation, range, or clustering algo-
rithms a domain expert may find values that are unexpected indicating possible invalid tuples. 
They can then be analysed more detail. The correction of such errors is often impossible (be-
sides simply deleting them) because the true values or unknown. Possible solution include 
statistical methods like setting the values to some average or other statistical value. Outliers 
can also be detected as violations of association rules [AIS93] or other existing patterns in the 
data. 

Another anomaly handled by statistical methods are missing values. Missing values are han-
dled based on filling-in (imputing) one or more plausible values [Win99]. The generation of 
imputations require computationally intensive data augmentation algorithms as described in 
[Sch97, Tan96]. 

7 Existing Approaches for Data Cleansing 

In this section we describe existing data cleansing projects. With the definition of anomalies 
occurring in data, the quality criteria affected by them, and a description of the data cleansing 
process and the methods used within it, we are now able to compare existing data cleansing 
approaches. The comparison will be done regarding the data anomalies eliminated within each 
of the approaches and the methods used by them. 

7.1 AJAX 
AJAX [GFSS00, GFSSS01b] is an extensible and flexible framework attempting to separate 
the logical and physical levels of data cleansing. The logical level supports the design of the 
data cleansing workflow and specification of cleansing operations performed, while the physi-
cal level regards their implementation. AJAX major concern is transforming existing data 
from one or more data collections into a target schema and eliminating duplicates within this 
process. For this purpose a declarative language based on a set of five transformation op-
erations is defined. The transformations are mapping, view, matching, clustering, and merg-
ing. 

The mapping operator expresses arbitrary one-to-many mappings between a single input rela-
tion and one or more output relations. The view operator is an equivalent to the view operator 
in SQL simply expressing limited many-to-one mappings with some additional integrity 
checking. The matching operator computes an approximate join between two relations assign-
ing a distance value to each pair in the Cartesian product using an arbitrary distance function. 
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This operator is fundamental for duplicate detection. The last operator is the merge taking a 
single relation as input, partitioning it according to some grouping attributes and collapsing 
each partition into a single tuple using an arbitrary aggregation function. This enhances the 
SQL-99 standard with user defined aggregation functions. The semantics of the five operators 
involves the generation of exceptions that provide the foundation for interacting with the ex-
pert user. 

The mapping operator performs the mapping between different formats as well as format 
standardisation, i.e., unification affecting the quality criteria format correspondence and uni-
formity. The integrity constraints checked by the view operator are those expressible in SQL. 
In case of constraint violation an exception is generated. This enables interacting with the 
user. It is not further mentioned how integrity violating tuples are corrected. The match, clus-
ter and merge operators enable duplicate elimination. How the tuples are merged is imple-
mented within a function specified in the merge operation. This cannot be done declaratively. 

The data cleansing process is specified by arranging the transformation operations as a linear 
data flow graph with each operation taking the output of one or more preceding operations as 
its input. A data lineage mechanism enables the users to inspect exceptions, analyze their 
provenance in the data cleansing process and afterwards correct the tuples that contributed to 
its generation. Corrected data can then be re-integrated into the data cleansing process. 

7.2 FraQL 
FraQL [SCS00, SS01] is another declarative language supporting the specification of a data 
cleansing process. The language is an extension to SQL based on an object-relational data 
model. It supports the specification of schema transformations as well as data transformations. 
at the instance level, i.e., standardization and normalization of values. This can be done using 
user-defined functions. The implementation of the user defined function has to be done for the 
domain specific requirements within the individual data cleansing process. 

With its extended join and union operators in conjunction with user-defined reconciliation 
functions FraQL supports identification and elimination of duplicates. Similar to SQL, the 
union and join operators can be refined by an on clause specifying the comparison attributes 
(for the union operator) resp. the comparison expression (for join operators). Both the union 
and join operators can be applied with an additional reconciled by clause which denotes a 
used-defined function for resolution of contradictions between tuples fulfilling the compari-
son clause. 

Also supported by FraQL is filling in missing values, and eliminating invalid tuples by detec-
tion and removal of outliers, and noise in data. Missing values can be filled-in with values 
computed from others, e.g. the average or median of the attribute or the attribute value of all 
tuples in a relation. Noise in data is handled by partitioning the data into bins or buckets based 
on a certain attribute and smoothing the data by different criteria like bucket mean, bucket 
median or bucket boundaries. 

7.3 Potter’s Wheel 
Potter’s Wheel [RH01] is an interactive data cleansing system that integrates data transforma-
tion and error detection using spreadsheet-like interface. The effects of the performed opera-
tions are shown immediately on tuples visible on screen. Error detection for the whole data 
collection is done automatically in the background. A set of operations, called transforms, are 
specified that support common schema transformations without explicit programming. These 
are value translations, that apply a function to every value in a column, One-to-one mappings 
that are column operations transforming individual rows, and Many-to-many mappings of 



  17 

rows solving schematic heterogeneities where information is stored partly in data values, and 
partly in the schema. The anomalies handled by this approach are syntax errors and irregulari-
ties. 

Potter’s Wheel allows users to define custom domains, and corresponding algorithms to en-
force domain format constraints. The arbitrary domains are closely related to our domain for-
mats. Potter’s Wheel lets users specify the desired results on example values, and automati-
cally infers regular expressions describing the domain format. Therefore, the user does not 
have to specify them in advance. The inferred domain format specification can afterwards be 
used to detect discrepancies. 

Specification of the data cleansing process is done interactively. The immediate feedback of 
performed transformations and error detection enables the users to gradually develop and re-
fine the process as further discrepancies are found. This enables individual reaction on excep-
tions. The complete data cleansing process is not further documented. 

7.4 ARKTOS 
ARKTOS [VVSKS01] is a framework capable of modelling and executing the Extraction-
Transformation-Load process (ETL process) for data warehouse creation. The authors con-
sider data cleansing as an integral part of this ETL process which consists of single steps that 
extract relevant data from the sources, transform it to the target format and cleanse it, then 
loading it into the data warehouse. A meta-model is specified allowing the modelling of the 
complete ETL process. The single steps (cleansing operations) within the process are called 
activities. Each activity is linked to input and output relations. The logic performed by an ac-
tivity is declaratively described by a SQL-statement. Each statement is associated with a par-
ticular error type and a policy which specifies the behaviour (the action to be performed) in 
case of error occurrence. 

Six types of errors can be considered within an ETL process specified and executed in the 
ARKTOS framework. PRIMARY KEY VIOLATION, UNIQUENESS VIOLATION and 
REFERENCE VIOLATION are special cases of integrity constraint violations. The error type 
NULL EXISTENCE is concerned with the elimination of missing values. The remaining error 
types are DOMAIN MISMATCH and FORMAT MISMATCH referring to lexical and do-
main format errors. 

The policies for error correction simply are IGNORE, but without explicitly marking the er-
roneous tuple, DELETE as well as WRITE TO FILE and INSERT TO TABLE with the ex-
pected semantics. The later two provide the only possibility for interaction with the user. 

The success of data cleansing can be measured for each activity by executing a similar SQL-
statement counting the matching/violating tuples. The authors define two languages for 
declaratively specifying of the ETL process. This is accompanied with a graphical scenario 
builder. 

7.5 IntelliClean 
IntelliClean [LLL00, LLL01] is a rule based approach to data cleansing with the main focus 
on duplicate elimination. The proposed framework consists of three stages. In the Pre-
Processing stage syntactical errors are eliminated and the values are standardized in format 
and consistency of used abbreviations. It its not specified in detail, how this is accomplished. 
The Processing stage represents the evaluation of cleansing rules on the conditioned data 
items that specify actions to be taken under certain circumstances. There are four different 
classes of rules. Duplicate identification rules specify the conditions under which tuples are 



  18 

classified as duplicates. Merge/Purge rules specify how duplicate tuples are to be handled. It 
is not specified how the merging is to be performed or how its functionality can be declared. 
If no merge/purge rule has been specified, duplicate tuples can also manually be merged at the 
next stage. Update rules specify the way data is to be updated in a particular situation. This 
enables the specification of integrity constraint enforcing rules. For each integrity constraint 
an Update rule defines how to modify the tuple in order to satisfy the constraint. Update rules 
can also be used to specify how missing values ought to be filled-in. Alert rules specify condi-
tions under which the user is notified allowing for certain actions. 

During the first two stages of the data cleansing process the actions taken are logged provid-
ing documentation of the performed operations. In the human verification and validation stage 
these logs are investigated to verify and possibly correct the performed actions. 

7.6 Comparison 
In table 2 the described data cleansing approaches are compared according to the types of 
anomalies handled by them and a short indication about the methods and techniques used as 
defined by each of them. The term User Defined indicates that detecting and eliminating the 
specific anomaly is possible but not specified in detail.  

 AJAX FraQL 
Potter’s 
Wheel 

ARKTOS IntelliClean 

Lexical Error      

Domain 
Format Error 

User 
Defined  

User 
Defined 

Pattern 
learning  

User 
Defined 

User 
Defined 

Irregularities User 
Defined 

User 
Defined   User 

Defined 

Constraint 
Violation 

Filter vio-
lating tuples   

Three types 
of con-
straints 

Alert and 
Update rule 

Missing 
Values 

User De-
fined 

Statistical 
Values   Update rule 

Missing 
Tuples      

Duplicates 
Match, 

Cluster and 
Merge 

Union, Join, 
and Recon-

ciliation 
  Merge/Purge 

rule 

Invalid 
Tuple  Statistical 

Methods    

Table 2. Comparison of data cleansing approaches 
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8 Challenges and Open Problems 

In this section we outline some open problems and challenges in data cleansing that are not 
satisfied until now by the existing approaches. This mainly concerns the management of mul-
tiple, alternative values as possible corrections, keeping track of the cleansing lineage for 
documentation efficient reaction to changes in the used data sources, and the specification and 
development of an appropriate framework supporting the data cleansing process. 

8.1 Error Correction and Conflict Resolution 
The most challenging problem within data cleansing remains the correction of values to 
eliminate domain format errors, constraint violations, duplicates and invalid tuples. In many 
cases the available information and knowledge is insufficient to determine the correct modifi-
cation of tuples to remove these anomalies. This leaves deleting those tuples as the only prac-
tical solution. This deletion of tuples leads to a loss of information if the tuple is not invalid as 
a whole. This loss of information can be avoided by keeping the tuple in the data collection 
and mask the erroneous values until appropriate information for error correction is available. 
The data management system is then responsible for enabling the user to include and exclude 
erroneous tuples in processing and analysis where this is desired. 

In other cases the proper correction is known only roughly. This leads to a set of alternative 
values. The same is true when dissolving contradictions and merging duplicates without ex-
actly knowing which of the contradicting values is the correct one. The ability of managing 
alternative values allows to defer the error correction until one of the alternatives is selected 
as the right correction. Keeping alternative values has a major impact on managing and proc-
essing the data. Logically, each of the alternatives forms a distinct version of the data collec-
tion, because the alternatives are mutually exclusive. It is a technical challenge to manage the 
large amount of different logical versions and still enable high performance in accessing and 
processing them. 

When performing data cleansing one has to keep track of the version of data used because the 
deduced values can depend on a certain value from the set of alternatives of being true. If this 
specific value later becomes invalid, maybe because another value is selected as the correct 
alternative, all deduced and corrected values based on the now invalid value have to be dis-
carded. For this reason the cleansing lineage of corrected values has to maintained. By clean-
sing lineage we mean the entirety of values and tuples used within the cleansing of a certain 
tuple. If any value in the lineage becomes invalid or changes the performed operations have to 
be redone to verify the result is still valid. The management of cleansing lineage is also of 
interest for the cleansing challenges described in the following two sections. 

8.2 Maintenance of Cleansed Data 
Cleansing data is a time consuming and expensive task. After having performed data clean-
sing and achieved a data collection free of errors one does not want to perform the whole data 
cleansing process in its entirety after some of the values in data collection change. Only the 
part of the cleansing process should be re-performed that is affected by the changed value. 
This affection can be determined by analysing the cleansing lineage. Cleansing lineage there-
fore is kept not only for tuples that have been corrected, but also for those that have been veri-
fied within the cleansing process as being correct. After one of the values in the data collec-
tion has changed, the cleansing workflow has to be repeated for those tuples that contains the 
changed value as part of their cleansing lineage. 
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The broad definition of require the collection and management of a large amount of additional 
meta-data to keep track of cleansing lineage. Efficient ways of managing the cleansing line-
age have to be developed. It is also of interest to determine which additional information re-
sulting from the initial workflow execution has to be collected in order to be able to speed-up 
ensuing cleansing workflow executions. 

8.3 Data Cleansing in Virtually Integrated Environments 
The problems mentioned in the preceding section intensify when performing data cleansing in 
environments of virtually integrated sources, like IBM’s DiscoveryLink [HSKK+01]. In these 
environments it is often impossible to propagate corrections to the sources because of their 
autonomy. Therefore, cleansing of data has to be performed every time the data is accessed. 
This considerably decreases the response time. By collecting and managing appropriate meta-
data like cleansing lineage and performed operations in a data cleansing middleware the per-
formance could be increased considerably. This could also prevent unnecessary data cleansing 
if the data in the sources does not change between accessing the sources. There still remains 
the trade-off between collecting huge amounts of meta-data and materializing the complete 
integrated data collection. The middleware should only collect as much data as necessary but 
still enable fast cleansing of data. 

8.4 Data Cleansing Framework 
In many cases it will not be possible to describe the whole data cleansing graph in advance. 
This makes data cleansing an iterative, interactive and explorative task. The whole data clean-
sing process is more the result of flexible workflow execution. Process specification, execu-
tion and documentation should be done within a data cleansing framework which in turn is 
closely coupled with other data processing activities like transformation, integration, and 
maintenance activities. The framework is a collection of methods for error detection and 
elimination as well as methods for auditing data and specifying the cleansing task using ap-
propriate user interfaces. 

Data cleansing should be tightly integrated with the data maintenance within the same frame-
work. The requirements for a data cleansing framework are (this might overlap with require-
ments for other data integration and management tasks): 

• The ability to uniformly describe the structure and access the contend of data sources 
possibly heterogeneous in the data model used. We also want to be able to be notified 
whenever data in the data sources are updated, deleted or added. 

• Abstract definition of possible error types so the user can be guided within the data 
auditing task. For each error type there need to be methods that can be configured and 
used for error detection and elimination. Machine learning techniques can be applied 
within the data cleansing framework. By learning about certain error types, their in-
stances, and their correction the framework is enabled to even better support the user 
in providing useful hints towards possible proceeding operations executing the data 
cleansing process. 

• For data cleansing a convenient user interface is needed. There has to be a formal lan-
guage or graphical assistance to describe the data cleansing process formally. This has 
to be closely coupled with languages used for the specification of other activities in 
maintaining and processing data. 

• Te performed activities are logged to enable a later trace-back and the generation of 
common workflows for the correction of errors of the same type. The documentation 
of the performed operations as well as the collection of additional meta-data allows the 
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verification of correctness for each of the tuples. This include the cleansing lineage. 
By logging the operations performed in explorative cleansing of individual tuples an 
appropriate sequence of cleansing operations can automatically derived for cleansing 
all tuples showing the specific anomaly. 

9 Conclusion 

Data cleansing is applied with different intensions and within different areas of the data inte-
gration and management process. It is defined it as the sequence of operations intending to 
enhance to overall data quality of a data collection. There is only a rough description of the 
procedure in data cleansing as it is highly domain dependent and explorative. Existing data 
cleansing approaches mostly focus on the transformation of data and the elimination of dupli-
cates. Some approaches enable the declarative specification of a more comprehensive data 
cleansing processes still leaving most of the implementation details for the cleansing opera-
tion to the user. There still remain a lot of open problems and challenges in data cleansing. 
They mainly concern the management of multiple, alternative values, the management and 
documentation of performed cleansing operations and the cleansing lineage, as well as the 
specification and development of an appropriate framework supporting the data cleansing 
process. 
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