Part 1:
Data & Process Integration
Gene-EYe Integration-Platform

The Big Picture

Genome Data Warehouse Layer (GDW Schema)

Biological Entities -> Biological Concepts (e.g. Life Cycle)

Genome DataBase Layer (GDB Schema)

Relational Entities -> Biological Entities (e.g. Gene)

Genome Data Store Layer (GDS Schema)

Flat File Data -> Relational Entities (e.g. EMBL)

Data Integration – Information Flow

XML Data
dtd, xsd

Relational Data
schema

Flat file Data
manual

Scanner

Mapping

Analysis

Data Store

meta data Repository

DDL

scanner generator

data model

format

structure
Meta Data Editor as an Eclipse Plugin

The editor is autogenerated from an UML-Model edited with Omondo UML in an Eclipse 2.1 IDE used in conjunction with the Eclipse Modelling Framework (EMF), a Model Driven Architecture plugin.

Integration of Data Cleansing

Problem
- Errors at every activity during ETL:
 - extract
 - transform
 - loading
- Errors at any level of granularity:
 - Column, tuple, table, schema, database
- Genome data sources:
 - No final source of truth available
 - Must cope with ambiguity

Proposed solution
- Integrate constraints in meta data
 - OCL statements (expressive, but complicated evaluation necessary)
 - Fixed set of error classes (restricted expressiveness, but easy to implement)
- Formalize operational semantic of Data Cleansing functions
- Define a plugin API for ETL work
Conclusion Part I

• First Steps:
 – Well on our way: working prototyp
• BUT….
• more ahead
 – Better modelling (flexibility!) & cleansing
 – Improved cleansing pipeline

Part II:
Alternative Splicing
Commonly Accepted View = Predefined Exons/Introns

Alternative Splicing: ~ 60 % of Human Genes

→ Protein Synthesis Prescription 1

"Skipping" → Protein Synthesis Prescription 2

Multiple Exon Skipping
Facultative Promotors
Cryptic Exons
Mutually Exclusive Exons
Splice Site Attenuation
Intron Retention
Resplicing
......

Other Active ORFs

in any (?) Combination
Determinism in Exon/Intron Assignment to DNA

questionable

A Revised Understanding of Information
Recruitment for Protein Synthesis is
advisable, if not imperative

Chop DNA into n Facultatively Exonic Fragments

Simulate Systematic Skipping

Theoretically 2^n Combinatorial Variants

\rightarrow Known Ones Easy To Identify
\rightarrow Dismiss Improper Concatenates
\rightarrow Scan for Regulatory and Functional Signals
Theoretically 2^n Combinatorial Variants

- Known Spliceforms Easy To Identify
- Dismiss Improper Concatenates
- Scan for Regulatory & Functional Signals
- Evaluate Splice Junctions

Instead of "Generate & Test"

Re-Splicing

PfamXYZ

Linear Runtime Strategy

Dynamic Programming

Optimization Task

- Viterbi-Algorithm with Jumps
 & Translation Control
- Runtime $\sim nk$
Example

- Working Hypotheses concerning Molecular Etiology
- Evidencing
 - Directly (PCR)
 - EST
 - MS/MS-Data (non-public)

Conclusions Part II

→ Refrain from Static Exon/Intron Distribution
→ Pay Attention to Signals Occuring while Distant Information Fragments are being Concatenated
→ Look for Evidence in Independent Data Sets

Thank you
Questions??