
Chapter 2 

RELATIONAL OPERATORS 

The update operations defined in the last chapter are not so much operations 
on relations as operations on tuples. In this chapter we shall consider oper- 
ators that involve the entire relation. First, we see how the usual Boolean 
operations on sets apply to relations, and second, we consider three operators 
particular to relations: select, project, and join. 

2.1 BOOLEAN OPEFWFIONS 

Two relations on the same scheme can be considered sets over the same uni- 
verse, the set of all possible tuples on the relation scheme. Thus, Boolean 
operations can be applied to two such relations. If r and s are relations on the 
scheme R, then r n s, r U s and r - s are all the obvious relations on R. The 
set r n s is the relation q(R) containing all tuples that are in both r and s, 
r U s is the relation q(R) containing all tuples that are in either Y or S, and 
r - s is the relation q(R) containing those tuples that are in r but not in s. 
Note that intersection can be defined in terms of set difference: r f7 s = 
r - (r - s). 

Let dam(R) be the set of all tuples over the attributes of R and their do- 
mains. We can define the complement of a relation r(R) as F= dam(R) - r. 
However, if any attribute A in R has an infinite domain, 7 will also be infinite 
and not a relation in our sense. We define a modified version of complemen- 
tation that always yields a relation. If r(Al AZ - - * A,) is a relation and Di = 
dom(A;), 1 5 i I n, the active domain of Ai relative to r is the set 

adom(Ai, r) = {d E Di 1 there exists t E r with t(Ai) = d }. 

Let adom(R, r) be the set of all tuples over the attributes of R and their active 
domains relative to r. The active complement of r is 2 = adom(R,r) - r. 
Note that r’ is always a relation. 
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Example 2.1 The following are two relations, r and S, on the scheme ABC: 

P(A B C) s(A B C) 

a1 h Cl 

a1 b2 Cl 

a2 bl ~2 

a1 bz Cl 

a2 b2 cl 

a2 b2 ~2 

The results of the operations r f3 S, r U s, and r - s are shown below. 

rfTs=(A B C) rUs=(A B C) r-s=(A B C) 

al b2 CI 01 bl ~1 
~1 bz ~1 
42 bl ~2 
a2 b2 ~1 
a2 b2 ~2 

41 bl 
~2 bl 

Given Ial, a2h {bl, b2, &I, and {cl, c2 } as the domains of A. B, and 
domain of R and the complement of T derived from the domain of R 
shown: 

dom(R)=(A B C) r= dam(R) --r=(A B C) 

al bl ~1 a1 bl 43 
al bl ~2 al b2 ~2 
al b2 CI a1 b3 cl 
~1 b2 ~2 01 b3 ~2 
al b3 cl ~2 bl cl 

al b3 ~2 a2 b2 ~1 

a2 bl cl 42 b2 ~2 
42 6 ~2 a2 b3 ~1 

~2 bz cl a2 b3 ~2 
~2 b2 ~2 

a2 b3 cl 

a2 b3 ~2 

Cl 
c2 

C, the 
are as 

To derive the active complement of T (that is, F), note that the active domain 
of B in the relation r does not contain b3. The active domain off, and the ac- 
tive complement of r, are: 
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adom(R)=(A B C) %=adom(R)--==(A B C) 

a1 bl Cl a1 4 ~2 

QI bl ~2 ~1 bz ~2 

al b2 ci (~2 bi cl 

al 4 ~2 a2 b2 cl 

a2 bl cl ~2 b2 ~2 

a2 bl ~2 
a2 b2 cl 
a2 b2 ~2 

It is difficult to imagine a natural situation where the complement of a 
relation would be meaningful, except perhaps for a unary (one-attribute) 
relation. Active complement might arise naturally. Suppose a company has a 
training program that has a group of employees working two weeks in each 
department. The information on who in the training program has completed 
time in which department could be stored in a relation done(EMPLOYEE 
TRAINED-IN). The relation ~6% would tell who had not completed training 
in what department, provided every employee in the program and every 
department is mentioned in done. Active complement can also be used as a 
storage compression device, when the active complement of a relation has 
fewer tuples than the relation itself. 

The set of all relations on a given scheme is closed under union, intersec- 
tion, set difference, and active complement. However, not all these opera- 
tions preserve keys (see Exercise 2.3). 

2.2 THE SELECT OPERATOR 

Select is a unary operator on relations. When applied to a relation r, it yields 
another relation that is the subset of tuples of r with a certain value on a 
specified attribute. Let r be a relation on scheme R, A an attribute in R, and 
a an element of dam(A). Using mapping notation, aA== (i-) (“select A equal 
to a on 8’) is the relation T’(R) = { t E rlt(A) = a }. 

Example 2.2 Table 2.1 duplicates the relation in Table 1.2. 
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Table 2.1 New version of sched(FLIGHTS). 

sched(NUMBER FROM TO DEPARTS ARRIVES‘) 
84 O’Hare 

109 JFK 
117 Atlanta 
213 JFK 
214 Boston 

JFK 
Los Angeles 
Boston 
Boston 
JFK 

3:oop 
9:4op 

1o:osp 
11:43a 
2:2op 

5:55p 
2:42a 

12:43a 
12:45p 
3:12p 

Table 2.2 is the result of applying uFRoM=JFK to sched. 

Table 2.2 Result of applying UFROM= JFK to sched(FLIGHTS). 

~FROM=IFK (sched) = NUMBER FROM TO DEPARTS ARRIVES 
109 JFK Los Angeles 9:4op 2:42a 
213 JFK Boston 11:43a 12345~ 

Select operators commute under composition. Let r(R) be a relation and 
let A and B be attributes in R, with a E &m(A) and b f dam(B). The iden- 
tity 

always holds. This property follows readily from the definition of select: 

UAq (UB=~ (I)) = U,JE~ ({t E ?-It(B) = b 1) = 
{t’ E (t E r(t(B) = b)lt’(A) = u> = {t E rlt(A) = a and@) = b) = 
{t’ E {t E +(A) = a}lt’(B) = b) = t,B=b (UAq (r)). 

Since the order of selection is unimportant, we write uACa 0 u@b as uAA=a,B=b 
and uA,=~, 0 aAzza2 0 * - - 0 uA,,=~,, as UA,=~,,A~=~~, __ ., Ancan. (The Ai’S 
need not be distinct. See Exercise 2.4.) If X is a set of attributes andx is an X- 
value, uxzx is also legitimate notation, if we interpret x as a sequence of values 
rather than a mapping. 

Select is distributive over the binary Boolean operations: 

where y = fl , U , or -, and r and s are relations over the same scheme. We 
prove uAca (r n s> = uAza (r) n uAca (s): 
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uA=n (r n S) = uAza ({tit c r and t E S>) = 
(t’ ~(tlt E r and t E s}Jt’(A) = a} = 
{tit E Y and t(A) = a) Cl {tit c s and t(A) = a) = 
uAya ({tit f r)) n aA=,, ((tit c s>) = ffAEo (r) n aAza (de 

The order of selection and complementation does make a difference in the 
result (see Exercise 2.5). 

2.3 THE PROJECT OPERATOR 

Project is also a unary operator on relations. Where select chooses a subset of 
the rows in a relation, project chooses a subset of the columns. Let r be a rcla- 
tion on scheme R, and let X be a subset of R. The projection of r onto X, 
written xx(r), is the relation r’(X) obtained by striking out columns corre- 
sponding to attributes in R - X and removing duplicate tuples in what re- 
mains. In mapping notation, xx (r) is the relation r ‘(X) = {t(X)! t E r }. 

If two projections are performed in a row, the latter subsumes the former: If 
xy is applied to the result of applying xx to r, the result is the same as if ay 
were applied directly to r, if the original application of 7ry was proper. More 
precisely, given r(R) and Y C X C R, q(~-(r)) = ?~y(r). Similarly, for a 
string of projections, only the outermost need be considered for evaluation. If 
X1 EX~E ... GX,GR,then 

Example 2.3 The following are the relations 

l. a(DEPARTS,ARRIVES)(sched)9 

2- ?TDE~ARTS (?T(DEPARTS,ARRIVES)bchd) = ?TDEPARTS(sched), and 
3. ~FROMkhedh 

for the relation sched in Table 2.1. 

1. ~{DEPARTS,ARRIVES}hhe& = (DEPARTS ARRIVES) 

3:oup 5:ssp 
9:4op 2:42a 

1o:osp 12:43a 
11:43a 12:45p 
2:2op 3: 12p 
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2. q,EPAR&ched) = DEPARTS 

3:oop 
9:40p 

1o:osp 
11:43a 
2:2op 

3. qR&sched) = FROM 

O’Hare 
JFK 
Atlanta 
Boston 

Projection commutes with selection when the attribute or attributes for 
selection are among the attributes in the set onto which the projection is tak- 
ing place. If A E X, X c R, and r is a relation on R, then 

rx (uAca (I-)) = nx ({t f +(A) = a >) = (t ‘(X)Jt ’ E {t E +(A) = u)} = 
(t(X) t E r and t(A) = U} = cAzo ({t(X)(t E r}) = cAzo (7~ (r)). 

This identity does not hold when A is not an element of X (see Exercise 2.7). 
The connection between projection and Boolean operations is treated in 

Exercises 2.8 and 2.9. 

2.4 THE JOIN OPERATOR 

Join is a binary operator for combining two relations. We illustrate its work- 
ings with an example. Suppose our imaginary airline maintains a list of 
which types of aircraft may be used on each flight and a list of the types of 
aircraft each pilot is certified to fly. These lists are stored as the relations 
usable (FLIGHT EQUIPMENT) and cetiifed(PILOT EQUIPMENT). 
Table 2.3 shows sample states of these relations. 

Table 2.3 Sample states of the relations usable(FLIGHT 
EQUIPMENT) and cetiified(PILOT EQUIPMENT). 

usable (PLIGHT EQUIPMENT) certified (PILOT EQUIPMENT) 
83 727 Simmons 707 
83 747 Simmons 727 
84 727 Barth 747 
84 747 Hill 727 

109 707 Hill 747 
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We want a list showing which pilots can be used for each flight. We create 
a relation options on the scheme (PLXGHT, EQUIPMENT, PILOT} from 
the relations usable and certified by combining rows with the same value for 
EQUIPMENT. Options is shown in Table 2.4. 

Once the relations are combined, if the EQUIPMENT values are no longer 
needed, we can compute ~~FLIGHT,PILOT~(optioYts), as shown in Table 2.5. 

In general, join combines two relations on all their common attributes. 
Start with relations r(R) and s(S), with RS = T. The join of r and s, written 
r w s, is the relation q(T) of all tuples t over T such that there are tuples t, E r 
and t, E s with t, = t(R) and t, = t(S). Since R n S is a subset of both R and 
S, as a consequence of the definition t,(R fl S) = t,(R fl S). Thus, every 
tuple in q is a combination of a tuple from Y and a tuple from s with equal 
(R n S)-values. 

Returning to Table 2.4, we see options = usable w certified. The defini- 
tion of join does not require that R and S have a non-empty intersection. If 
R n S = (6, then I w s is the Cartesian product of r and s. Actually, the 
Cartesian product of two relations would be a set of ordered pairs of tuples. 

T&Ie 2.4 The relation options on the scheme 
{FLIGHT, EQUIPMENT, PILOT). 

options (FLIGHT 
83 
83 
83 
83 
84 

E 
84 

109 

EQUIPMENT PILOT ) 
727 Simmons 
727 Hill 
747 Barth 
747 Hill 
727 Simmons 
727 Hill 
747 Barth 
747 Hill 
707 Simmons 

T&le 2.5 Computation of ?~{~IGHT,PIL~T) (o@Jns>. 

~(FIJGHT,PILOT )(OPtbns) = ( ETEHT PILOT ) 
83 Simmons 
83 Hill 
83 Barth 
84 Simmons 
84 Hill 
84 Barth 

109 Simmons 
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By Cartesian product we shall mean Cartesian product followed by the 
natural isomorphism from pairs of R-tuples and S-tuples to RS-tuples. 

Example 2.4 Let z and s be as shown: 

Then r w s is seen to be: 

rws=(A B C D) 

al bl cl dl 
41 bl =2 4 
=I 4 ~2 4 
a2 bl cl 4 
a2 h ~2 dl 
a2 b, ~2 4 

2.5 PROPERTIES OF JOIN 

There are more properties of join than we have room to list. We shall give 
some of them here, use others for exercises, and leave the rest for the reader 
to discover. 

The join operation can be used to simulate selection. Given r(R), suppose 
we wish to find aA&). First define a new relation s(A), with a single tuple 
t, such that t(A) = a. Then r W s is the same as oA&r). The intersection of 
R andA isA, so 

r w s = (tlthere exists t, E r and t, E s such that t, = t(R) and t, = 
t(A)) = (#here exists t, E r with t, = t(R) and t(A) = u> = 
{t E rlt(A) = a) = 
uAca (r)- 

We can also manufacture a generalized select operation using join. Let s(A) 
now be a relation with k tuples, tr, t2, . . . , tk, where t!(A) = ai and a; E 
don(A), 1 s i I k. Then 
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If we choose two attributes A and B from R and let s(AB) be the retation with 
the single tuple t such that t(A) = a and t(B) = b, then 

rWs= @A=a.B=b (r)- 

There are other variations of selection available by adding columns and 
tuples to s. 

It can be seen that the join operator is commutative from the symmetry in 
its definition. It is also associative. Given relations 4, r, and s, 

(q W r) W s = q W (r W s) 

(see Exercise 2.11). Hence, we can write an unparenthesized string of joins 
without ambiguity. 

We introduce some notation for multiple joins. Let st(Sr), s#&, . . ., 
s,(S,) be relations, with R = Sr U S2 U . - - U S, and let S be the se- 
quence S1, Sz, . . . , S,. Let tr, t2, . . . , t, be a sequence of tuples with ti c si, 
15 i 5 m. Wesaytuplest,, t2, ..,, t, arejoirzable olt S if there is a tuple t 
on R such that tj = t(S,), 1 5 i 5 m. Tuple t is the result of joining t,, t2, 
. . . , t, on S. 

Example 2.5 Tuples (al bl), (bl cz), and (a1 ~2) from relations sl, s2, 
and s3, as shown 

Sl(A m sz(B Cl s36-4 a 

~1 bi h ~2 a1 c2 

~1 b2 b2 ~1 a2 ~2 

~2 bl 

are joinable with result (al bl c2), and tuples {al bl), (bl c2), and {aZc2) 
are joinable with result (a2 bl c2): 

slrxs2wsj=(A B Cl 

al bl ~2 

~2 bl ~2 

If m = 2 in the definition above, then if tuples tl and t2 are joinable on 
S = Sr, S2 with result t, then tl = t(S,) and t2 = t(S2). From the definition 
of join, t must be in s1 w s2. Conversely, if t is a tuple in s1 w s2, then there 
must be tuples tl and t2 in s1 and s2, respectively, with tl, t2 joinable on S 
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with result t. Hence, s1 w s2 consists of those tuples t that are the result of 
joining two tuples t i, t2 that are joinable on S. 

Using the associativity of the join and induction, it is straightforward (but 
tedious) to prove the following result. 

Lemma 2.1 The relation sl w s2 w . . . w s, consists of all tuples t that 
are the result of joining tuples tl, t2, . . . , t, that arc joinable on S = S1, Sz, 

s ..*, m. 

Not every tuple of every relation may enter into the join. The relations si, 
s2, - - -, s, join completely if every tuple in each relation is a member of some 
list of tuples joinable on S. 

Example 2.6 Example 2.5 shows a three-way join where the relations do not 
join completely. Tuple (ai b2) of s1 and tuple < b2 cl) of s2 are left out of the 
join, for instance. If tuple (ai cl> is added to ~3, then the relations do join 
completely, as shown below. 

~164 B) s2@ 0 sdA Cl 

~1 b, bl c2 a1 Cl 

QI b2 b, cl a1 c2 

~2 bl a2 c2 

SlWS2WS3=(A I3 C) 

ui bl ~2 
~1 b2 cl 
~2 bl ~2 

The join and project operators, though not inverses, do perform comple- 
mentary functions. Let r(R) and s(S) be relations and let q = t W s. The 
scheme for q is RS. Let r ’ = n-R(q). Is there any connection between T and 
t ‘? Yes, r ’ E r, since for any tuples t to be in q, t(R) must be a tuple of T, 
andr’ = (t(R)lt E q 1. 

Example 2.7 The following shows that the containment is sometimes 
proper (f ’ C r). 
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rtA B) SW a rws=q(A B C) 

a b b c a b c 
a b’ 

?TAidq) = ~‘64 B) 
a b 

Next is a case where equality holds (r ’ = r). 

r(A B) 0 C) rrws=q(A B C) 

a b’ b c ab c 
a b’ b’ C’ a b’ C’ 

n,dq) = r’(A B) 
a b 
a b’ 

The containment becomes equality when for each tuple t, E r there is a tuple 
t, E s with t,(R fl S) = t,(R n S). Containment can also become equality 
without T and s joining completely (see Exercise 2.14). However, if s ’ = 
ss(q), then the condition F = r ’ and s = s ’ is exactly the same as T and s 
joining completely. This result generalizes to more than two relations (see 
Exercise 2.15). 

What happens when we reverse the order and project and then join? Let q 
be a relation on RS, with P = rR(q) and s = ?rs(q). Let q ’ = I w s. If t is a 
tuple of q, then t(R) is in T and 2(S) is ins, so t is also in q ‘. Therefore, q ’ 2 
q. If q’ = q, we say relation q decomposes losslessly onto schemes R and S. 
Lossless decomposition for more than two relations is treated in Chapter 6. 

Example 2.8 The relation q in the second part of Example 2.7 decomposes 
losslessly onto Al? and BC. 

We can go one step further. Let T’ = xR(q ‘), s’ = xs(q ‘) and q” = 
T ’ w s ‘. We are performing the project-join procedure twice on q to get q “. 
Let T be the intersection of R and S. Then TV = rT(rR(q)) = rT(q) = 
nT(rs(q)) = xr(s), so r and s join completely, since for any tuple t, in r, 
there must be a tuple t, in s with t,(T) = t,(T), and vice versa. Hence r = r ’ 
ands = s’, so q ’ and q ” must be the same. Thus, the project-join procedure 
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is idempotent: the result of applying it once is the result of applying it twice. 
This project-join procedure will be treated in more detail in Chapter 8. 

Finally, we examine join in connection with union. Let r and r ’ be 
relations on R and let s be a relation on S. We claim that (r U r ‘) w s = 
(r W s) U (r ’ W s). Call the left side of the equation 4 and the right side q ‘. 
Given a tuple t E q, there must be tuples t, and t, that are joinable with result 
t, with t, in r or r ’ and t, f s. If t, E r, then t is in r w s. Otherwise, t is in r ’ 
w s. We have shown q c q ‘. For the other containment, q 2 q ‘, if t is in 
q ‘, then t is in r w s or r ’ w s. In either case, t is in (r U r ‘) w s. 

2.6 EXERCISES 

2.1 Let r(ABC) and s(BCD) be relations, with a in dam(A) and b in 
dam(B). Which of the following expressions are properly formed? 

:z; 
rUs 
dr) - Q(S) 

(4 uB=b b-1 
(d) u~A=~,~=&) 

rWs 
x,4(r) W m(s). 

2.2 Relations r and s are given below. 

r(A B C) s(B C D) 

a b c b’ c’ d 
a b’ c’ b” c’ cr 
a b” C’ b” c d 
ar b’ c 

Compute the values of the following expressions. 

(a) J 
(b) Z 
(4 a;lca(r) 
(d) all the properly formed expressions in Exercise 2.1. 

2.3 Let r and s be relations on scheme R with key K. Which of the following 
relations must necessarily have key K? 

(a) rUs 

(b) rfls 
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F, where iis a relation 
W w(r) 
(f) r Da s. 

2.4 Let r(R) be a relation with A E R and let a, a ’ E don(A). Prove 

bA=a,A=a’(r) = @ or OA~~,A=~,(~) = u~=,(r)l. 

2.5 Let r and s be relations on R with A E R and let a E don(A). Prove or 
disprove the following. 

(a) a~=,(?) = o~=~(r) 
(b) a~=,(~ n S) = UA&) n S. 

2.6 Let r be a relation on R[A_ B C]. What can be said about the size of 
UAca(T)? 

2.7 Let X be a subset of R, A E R, A ct X and let r be a relation on R. Find a 
counterexample to 

rX(uA=,(r)) = uA=,(~X(r)). 

2.8 Let X be a subset of R and let f and s be relations on R. Prove or 
disprove the following equalities. 

(4 T& n S) = ~(4 n ~(4 
(b) q& U s) = q&l U ?T&) 

%+ - s) = T&l - r&) 
TX(~) = nx(r), where Fis a relation. 

2.9 For each of the disproved equalities in Exercise 2.8, try to prove con- 
tainment in one direction. 

2.10 Let A be an attribute in R, let R ’ =R -AandletrbearelationonR. 
What relationships exist between the sixes of the relations I-, uAza(r), 
PA, TRV(~) and U~=,(n;l(r))? 

2.11 Given relations q, r and s, show 

(a) (q w r) b-4 s = q w (r oa S) 
(b) q w q = q 
(cl q Da T = q Da (q Da r). 
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2.12 Let r(R) and s(S) be relations with A E R. E’rove 

c7,4=*(t w s) = U,4=*(Y) w s. 

2.13 Let Y and t ’ be relations on R, and let s be a relation on S. Prove or 
disprove: 

(a) (Y n r’) w s = (r w S) n (Y’ w S) 
(b) (Y - u’) w s = (Y w s) - (Y ’ w s) 
(c) r’!xS=rW. 

2.14 Given relations r(R), s(S) and q = r w s, show that rR(q) = r can 
hold without I and s joining completely. 

2.15” Let Si(Si), sz(Sz), . . ., s,(S,) be relations and let 4 = s1 w s2 w 
a.. w s,. Prove that sl, s2, . . ., s, join completely if and only if si = 
7rs,(q), 1 S i 5 m. 

2.16 Let q(R) be a relation and let Si be a subset of R, 1 I i 5 m. Define 
Si = nsi(q), 1 I i 5 m. Prove s1, s2, . . . , s, join compietely. 

2.17 Let q be a relation on RS. Give an example of when the containment 

4 c w?(q) w T.s(B) 

is proper. 

2.18 Given relations r(R), s(S) and q = I w s, define r’ = nR(q) and s ’ = 
ns(q). Prove 

4 =r’Das’. 

2.19” Given a relation q(RS), find a sufficient condition for 

4 = q?(q) w Tdq). 

Is your condition necessary? 

2.7 BIBLIOGRAPHY AND COMMENTS 

The relational operators select, project, and join in the form here were in- 
troduced by Codd [1970, 1972b], although analogs are given by Childs [I9681 
for a slightly different model. Join is sometimes called natural join to dis- 
tinguish from other join-like operations, which we shall see in Chapter 3. In 
some sources, relations are treated in the traditional mathematical fashion, 
with ordered tuples and component denoted by number. We shall not make 
use of this treatment. 


