Top-Down Data Integration by Visualization

Stephan Heymann

Workshop on Data Bases and Data Integration in Genome Research

Feb. 7 - 8, 2002, Berlin

Humboldt University, DBIS group

Kelman GmbH
LION: “... several dozen servers world-wide ... over 300 databanks ...“
Next Pages:
Design Principles and Functionality of the Graphical Networking Tool Family "Viator"
Requirement 1
No. of Nodes $>> 10^3$
No. of Arcs $>> 10^3$
Tree Depths unlimited
Mightiness of Nodes and Arcs unlimited
Requirement 2
Self-Growing Graphs
Joint and Disjoint Partitions
Requirement 2
Self-Growing Graphs
Joint and Disjoint Partitions
Requirement 3
No Planar Depiction
Requirement 3
No Planar Depiction

Instead - Art as Paragon:

M. C. Escher’s hyperbolic geometry of repeating objects “Fish-Eye Mode“
Requirement 4
“Inheritance“ Top-Down
“Inheritance“ Bottom-Up
over n hierarchical levels
Requirement 4

“Inheritance“ Top-Down
“Inheritance“ Bottom-Up
over n hierarchical levels
Requirement 4
“Inheritance“ Top-Down
“Inheritance“ Bottom-Up
over $n$ hierarchical levels
Requirement 4
"Inheritance" Top-Down
"Inheritance" Bottom-Up
over n hierarchical levels
Specific View:

Create the Entire Multitude of Molecular Versions the Product of Gene XYZ (MEFV) may be met, incl.

- Splice Forms
- SNPs
- Disease Causing Mutations

Essentially that means:
Conclusion and Outlook

• Generic Toy for Graphical Networking
• Independent of Nature of Arcs & Nodes
• Display DB Content & Query Output Graphs
• Model & Materialize Views

Invitation

• Paste any graph into a Template
• Get the acc. Viator back and Tell Us How It for Your Particular Purpose

Thank You